Q.P. Code: 20CE1010				
R	eg.	. No:		
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) M.Tech I Year I Semester Regular Examinations July-2021				
THEORY OF STRUCTURAL STABILITY (Structural Engineering)				
Т	ime		. Marl	ks: 60
1	De	(Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I erive the differential equation for maximum deflection and maximum bending	L3	12M
	moment in Case of beam column with central load. OR			
2	a	Derive the differential equation of slope in case of continuous beams with axial Loads.	L3	6M
	b	Derive the differential equation for beam columns with compressive force and distributed lateral load.	L3	6M
3	De	UNIT-II erive Euler's column formula for elastic buckling of straight bars. OR	L3	12M
4		erive expression for critical load in case of buckling of bars with intermediate mpressive forces.	L3	12M
5	a	Explain the Tangent Modulus and Reduced Modulus theories.	L2	6M
	b	Show that the reduced modulus of rectangular cross section. OR	L2	6M
6	a	Briefly discuss buckling of straight bar column.	L1	6M
	b	Differentiate between elastic buckling & inelastic buckling. UNIT-IV	L1	6M
7		OR	L2	12M
8	Dei	rive lateral buckling of simply supported beam of narrow rectangular section. UNIT-V	L3	12M
9		pure bending.	L3	12M
10		OR brive the critical value of the compressive force for buckling of simply supported betangular plates uniformly compressed in two directions.	L3	12M

*** END ***